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Abstract Protein—protein interactions play an important
role in regulating the expression of huntingtin protein (htt).
Expansion of polyglutamine tracts in htt results in neuro-
degenerative Huntington disease. Huntingtin interacting
protein (HIP14) is an important interacting partner of htt
and the altered interactions have been proposed to play an
important role in disease progression. In the present study,
an attempt has been made to explore the potential of several
known Huntington inhibitors to inhibit HIP14. The docking
studies have resulted in the identification of a novel binding
site for these inhibitors distinct from the previously known
ankyrin repeat domain. The results have been validated
using geometry based docking transformations against the
other binding pocket. The specificity of binding has been
determined with high values of both accuracy and preci-
sion. Nine potential inhibitors obtained after screening
belong to three distinct classes of compounds viz, carbohy-
drates (deoxy-glucose), alcohols (including phenolic scaf-
fold) and tetracycline. The compounds form stable complex
with protein exhibiting optimal intermolecular and Gibbs
free energy. The hydrogen bonding and hydrophobic
interactions predominantly contribute to the stability of
these complexes. The present study identifies metoprolol,

minocyclines and 18 F fluorodeoxyglucose as the best
inhibitors that bind specifically to the new site. Therefore,
these compounds can further be exploited for their potential
to serve in the diagnosis and treatment of Huntington
disease. The quantitative predictions provide a scope for
experimental testing in future.
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Abbreviations
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Introduction

Huntingtin interacting protein (HIP14) is a conserved
mammalian neuronal palmitoyl transferase (PAT) involved
in the palmitoylation and trafficking of multiple neuronal
proteins, including Huntingtin protein (htt), which is known
to play an important role in facilitating the palmitoylation
activity of HIP14. It regulates several functions of htt by
palmitoylation at the residue cysteine 214, which is
essential for htt trafficking and function [1, 2]. There exists
a reciprocal relationship between the over expression of
HIP14 and formation of huntingtin inclusion bodies [2].
Therefore, abnormal modifications resulting from the
palmitoylation of htt contributes to protein misfolding and
formation of inclusion bodies, a characteristic feature of
Huntington disease (HD) [3]. Earlier studies have suggested
that an expansion of polyglutamine tract of htt alters the
interaction between htt and HIP14 [1–3]. This reduces the
post translational modification of htt by HIP14 resulting in
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the formation of inclusion bodies and enhanced neuronal
toxicity. Consequently, it could also result in neuronal
dysfunction in HD thus obstructing the normal intracellular
transport pathways in neurons [3]. PATs have also been
established as anticancerous drug targets as they help in the
trafficking of several oncogenes through post translational
modifications. siRNA studies have demonstrated the PAT
activity in HIP14 can be targeted by small molecule
inhibitors [4].

The crystal structure of the HIP14 fragment contains
seven ankyrin repeats with each repeat possessing a helix-
turn-helix-β-turn structure. It also contains an aromatic
cage on the surface which is the potential site for methyl-
lysine binding. Glutamate and aspartate residues present in
the aromatic cage play an essential role in the differential
selection of methylation states of lysine. The N-terminal
domain of the protein is responsible for substrate recogni-
tion. The aromatic cage is lined by hydrophobic residues
comprising two tryptophans, one tyrosine and one methi-
onine [6]. We have investigated the inhibitory potential of
the various inhibitors that target the Huntington disease.
Also, we have focused on the potential of the new binding
site for interaction with drugs varying in their chemical and
pharmacological properties that are employed in the
symptomatic treatment of HD. Therefore, several classes
of heterogeneous molecules were used for the present study.
Inhibitors that have been screened initially targeted the
various processes of the disease. Only those inhibitors that
adhered to the Lipinski’s rule of Five [5] have been
evaluated further for their inhibitory effects against HIP14.

So in the present study we hypothesize the binding
activity of surface aromatic cage [6] involved in methyl-
lysine binding with the screened inhibitors. The com-
pounds have been adjudged based on their docking energy
and free energy of binding. These compounds majorly
belong to alcohols, carbohydrates and tetracycline. The
discovery of these potential inhibitors against HIP14
opens future avenues for designing compounds that could
target the interaction of HIP14 with htt— an important
protein that directly relates to Huntington disease. Reduc-
tion in interaction could down regulate the htt’s expres-
sion, providing a lead to prevent the inclusion body
formation in Huntington disease. To the best of our
knowledge this is the first report that explores the
druggable property of the HIP14.

Methods

Selection and preparation of macromolecule

Crystal structure of the HIP14 protein (3EU9) was retrieved
from PDB databank (http://www.pdb.org/) [6, 7].

The protein as well as ligand optimization were carried
out using sybyl-x1.1 with conjugate gradient method [8].
Rigid docking was performed for studying protein-
inhibitor interactions through AutoDockTools. The atom
types and bond types were assigned and only polar
hydrogens were added to neutralize the protein [9, 10].
The grid maps were generated with different docking grids
points spanning different regions of the protein with the
grid point spacing of 0.375 Å. The grid map has covered
the active site along with the significant portions of the
surrounding surface [11].

Retrieval and preparation of ligand dataset

Thirty four drugs were obtained from PubChem database
(http://pubchem.ncbi.nlm.nih.gov/) and their qualitative and
quantitative characterizations such as physiochemical prop-
erties were analyzed. To generate dataset, compounds have
been screened based on the above defined properties [5, 12]
and Open Babel software were used for the file format
conversion (http://openbabel.org) [13].

Solvent accessibility, logP and logD calculations

The different aspects of solvent accessible surface (SAS)
of the biologically active compounds were visualized using
Accelrys Discovery Studio Visualizer2.5 (http://www.
accelrys.com/products/downloads/ds_visualizer/) with
default parameters. The radius of a rolling probe was taken
as 1.4 Å, which imitates the size of a water molecule.
Solvent accessibility was calculated for side chains and all
residue atoms. At different pH, logP and logD values of
drugs have been derived from PubChem and ChemSilico
Predict (http://www.chemsilico.com) respectively.

Interaction studies and binding pattern detection

Molecular docking has been carried out using Lamarckian
Genetic algorithm with AutoDock4.1 with default
parameters. Docking interactions have been clustered
to determine free energy of binding and the optimal
docking energy conformation that is considered as the
best docked pose [11]. Blind docking and different
docking grids have been used to rule out the possibility
of false results. Subsequently, the standard deviation of
mean (MD) was calculated using optimal energy ligand
conformation obtained after each run. RMSD calcula-
tions were performed using protein- Minocycline com-
plex, exhibiting lowest inhibitory constant as the
template.

Alternatively, docking was carried out between HIP14
and inhibitors to check for the existence of any
interaction with the previously known binding pocket.
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The geometry based protein-protein docking transforma-
tions between htt-HIP14 and htt-HIP14-inhibitor complex
was also performed using Patch Dock Server (http://
bioinfo3d.cs.tau.ac.il/PatchDock/) [14] to yield good

molecular shape complementarity with the default settings
for further validation. CastP server has been used for
validation of the newly defined pocket (http://sts.bioengr.
uic.edu/castp/).

Fig. 1 Inhibitors used for docking studies Chemical structure of 34 inhibitors dataset used for the diagnosis and treatment of Huntington disease
and their CID are also given
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Binding energy and pattern analysis

Generated conformations had an associated value of
binding free energy. Estimated inhibition constants (Ki)
were used for determination of binding energies of different
docking conformations, ranking in accordance to their
binding scores [15]. Ki was calculated using the Lamarckian
genetic algorithm applied on a large dataset of complexes as
implied in Autodock4.1. For the estimation of binding free
energy in kcal mol-1 the electrostatic energy, van der Waals,
hydrogen bond, desolvation energy, total intermolecular and
torsional energy of binding were used (Tables 3, 4, S2 and
S3). A 2 Å RMSD constraint with respect to the HIP14
crystal structure was set for studying protein-inhibitor

interactions. Chimera and DS Visualizer2.5 [16] software
were used for visualization and calculation of respective
interactions.

Intermolecular Gibbs free energy was calculated as
described previously [17].

Statistical performance

The statistical parameters of sensitivity, specificity, false
positive rate, false negative rate, precision, recall, F-
statistics and accuracy have been calculated for the 18
inhibitors that have primarily screened, based on their
‘drug likeliness’. The calculations have been done twice
to determine the precision in our results. All the formulas

Drug CID M/w (g/mol) HBD* HBA* Rotatable Bond Complexity

Glycerol 753 92.09382 3 3 2 25.2

Amantadine 2130 151.2487 1 1 0 144

Cystamine 2915 152.2815 2 2 5 37

Gabapentin 3446 171.2368 2 3 3 162

Haloperidol 3559 375.8642 1 4 6 451

Memantine 4054 179.3018 1 1 0 240

Mephenesin 4059 182.2164 2 3 4 138

Metoprolol 4171 267.3639 2 4 9 215

Mirtazapine 4205 265.3529 0 3 0 345

Fructose 5984 180.1559 5 6 5 147

Folic acid 6037 441.3975 6 11 9 767

Mannitol 6251 182.1718 6 6 5 105

Trometamol 6503 121.135 4 4 3 54

Pentaerithrityl 6518 316.1366 0 12 8 311

Diodone 9303 510.0641 3 6 5 323

Ethambutol 14052 204.3098 4 4 9 109

Prenalterol 42396 225.2842 3 4 6 179

Paroxetine 43815 329.3654 1 5 4 402

Lactic acid 61503 90.07794 2 3 1 59.1

Venlafaxin 62923 313.8627 2 3 5 279

Meglumine antimonate 64953 365.9797 7 9 6 180

18 F Fludeoxyglucose 68614 181.1495 4 6 5 142

Sorbitol 82170 182.1718 6 6 5 105

Propranolol 91536 259.3434 2 3 6 257

Oxprenolol 94423 265.348 2 4 9 246

Dexpanthenol 131204 205.2515 4 4 6 182

Benzodiazepines 134664 144.1732 1 2 0 184

Octopamine 448337 153.1784 3 3 2 111

ACR 16 636302 764.3019 0 1 10 1260

Dimercaprol 3246063 124.225 1 1 2 32

Minocycline 5281021 457.4764 5 10 2 971

Rapamycin 5284616 914.1719 3 13 6 1760

Chlorphenesin 6927747 202.6348 2 3 4 135

Guaifenesin 6950715 198.2158 2 4 5 151

Table 1 Physiochemical prop-
erties of selected drugs

*HBA hydrogen bond acceptor

*HBD hydrogen bond donor
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for the statistical calculations are included in the
supplementary Table S4 [18].

Results

Rationale for macromolecule and ligand selection

To determine the inhibition efficacy of various drugs
against HIP14. The dataset of 34 inhibitors, given in
Fig. 1 are useful for the diagnosis and treatment of
Huntington disease as shown in Table 1. Lipinski’s rule of
five [5] was applied to limit the number of inhibitors to 18
which are further used for screening (Fig. 2).

Correlation between logP and polar surface area (PSA)

For determination of the absorption of various inhibitors
logP and polar surface area (PSA) were considered. A
threshold of 140 Å2 is used for distinguishing between
poorly absorbed and well absorbed inhibitors. The mean
values of logP and PSA are 2.3226 and 64.5867 Å,
respectively. The inhibitors close to mean logP and PSA
value were considered to be readily absorbed, as compared
to those exhibiting values far from the threshold. There
exists a reciprocal relationship between the PSA and human
intestinal absorption [19] (Table 2).

Based on logP and PSA values the inhibitors with
alcoholic scaffold were found to be readily absorbed
whereas the inhibitors with tetracycline and carbohydrate
scaffold showed poor intestinal absorption.

Comparison of logP and logD values of inhibitors
at different pH

The partition coefficient (logP) is the ratio of the concen-
trations of an unionized compound in the two phases of a
mixture of octanol and water at equilibrium, whereas the
distribution coefficient (logD) is the ratio of the sum of the
concentrations of all forms of the compound (both ionized
and unionized) in each of the two phases [20]. On
comparing logP and logD values, it was found that as the
logP value increases from negative toward positive value,
logD also increases, but as logP value increases for
Mephenesin(1.4), Metoprolol(1.9), Oxpranolol(2.1) logD
value decreases. Furthermore it was observed that logD
value increases for Propranolol as shown in Tables 2, S1.
LogP values are also related to the solvent accessible
surface area (SASA) and PSA, indicating compounds
activity (Tables 2 and S1). An increase in PSA values with
substantially high SASA values result in a proportional
increase in inhibitor activity [21].

Docking studies and energies calculation

The 18 screened inhibitors have been docked to HIP14
protein using Lamarckian genetic algorithms. The docking
results, the predicted binding energies and inhibitory
constant have been calculated for all of them (Tables 3, 4,
S2 and S4). The results of predicted binding energies have
been clustered to determine the optimal docking energy
conformation that is considered as the best interacting pose.
Further, the results were confirmed using blind dock and
different grid size spanning different regions of the protein.
Unanimously both the strategies have indicated the HIP14
interaction with inhibitors involves a new binding site. It
comprises residues Leu211, Thr212, Asn214, Val215,
Ser216, Val217, Asn218, Leu219, Glu246, Ala247, and
Gly248 (Fig. 3). The relative contribution of the various
residues in these interactions has also been evaluated.
Leu211, Val217 and Asn218 are the major interacting
residues, lining the pocket (Fig. 4). The results have been
validated by docking the HIP14 and also HIP14-inhibitor
complex against htt. The ankyrin repeat domain of HIP14
was involved in interaction with the htt and the complex.
None of the residues of this new found pocket were
involved in protein-protein interactions. However, all the
inhibitors interacted with the residues present in the new
pocket. The various energies for binding were estimated
which includes the electrostatic component of binding free
energy, van der Waals, hydrogen bond, desolvation energy,
total intermolecular energy, torsional energy and Gibbs free
energy of binding. The inhibitory constant Ki for protein-
inhibitor binding was calculated which exhibits a strong
correlation with the binding energy. Lower Ki values

Fig. 2 Flow chart depicting the strategy used for screening of
compounds 18 inhibitors which have been screened based on their
physiochemical properties. Inhibitors with molecular weight (M.W.),
hydrogen bond acceptance (HBA) and hydrogen bond donation
(HBD) potential within the range of Lipinski’s rule of five have been
considered for the study
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directly relates to the docking energy and inversely to the
binding affinity. The RMSD values for the best inhibitors
were calculated. The conformation with minimum docking
energy in each cluster obtained after every run is taken as
reference for calculating the standard deviation of mean.
CastP has been used to validate our predictions.

Protein–ligand interactions

Based on the energy values for various proteins—inhibitor
complexes, nine out of the 22 inhibitors possessing the
lowest binding energy were chosen as the best inhibitors.
Ethambutol, Prenalterol, Dexpanthenol, have been screened
out at the initial stage, owing to their high docking energies.

The best inhibitors were broadly classified into three groups
namely; alcohols (including phenolic scaffold), carbohy-
drates (deoxy glucose family) and tetracycline. Complexes
formed by Gabapentin, Prenalterol, Paroxetine, would be
less stable as they form only one hydrogen bond with the
binding pocket. Memantine, mirtazapine have been
screened out as they do not show any interaction with the
protein, despite their low docking energies. Haloperidol,
Venlafaxin interacts with only Asn217. Propranolol, Oxpre-
nolol interacts with both Val217 and Asn218 however
forming hydrogen bond only with the former. Out of these
nine inhibitors; Minocycline, 18 F Fluorodeoxyglucose and
Metoprolol show the optimal binding energies and also they
interact with both the residues i.e. Val217 and Asn218

Drug LogP LogD (pH 2) LogD (pH 5) LogD (pH 7.4) PSA* SASA*

Fructose -3.2 -2.59 -2.59 -2.59 118 10,472.1

18 F Fluorode
oxyglucose

-2.4 -2.12 -2.12 -2.12 98 10,443.6

minocyclines 0 -1.83 -0.92 -0.73 165 10,382.5

Chlorphenesin 1.2 1.6 1.6 1.6 49.7 10,315.3

Mephenesin 1.4 1.26 1.26 1.26 49.7 10,286.3

Guaifenesin 1.4 0.65 0.65 0.65 58.9 10,297.3

Metoprolol 1.9 -0.33 -0.33 0.11 50.7 10,457.0

Oxprenolol 2.1 -0.43 -0.42 0.53 50.7 10,330.5

Propranolol 3 0.46 0.46 0.58 41.5 10,321.2

Table 2 Comparison of various
parameters for screened poten-
tial drugs

*SASA solvent accessible
surface area

*PSA polar surface area

Table 3 Calculated energies and RMSD for protein complexes with potential inhibitors showing interaction with Val 217

Drug Ha Eb Vdw-Hb-Ds Ic Td BEe Ki Value (mM) ΔGinter MD RMSD

Mephenesin 13 -0.08 -4.95 -0.19 1.1 -4.00 1.16 -1370.56 0.1 0.962

Metoprolol 19 -0.06 -5.27 -0.18 2.47 -2.88 7.79 -1370.86 0.146 0.904

Fructose 12 0.37 -4.47 0.01 2.74 -2.1 29.12 -1370.37 0.106 0.931

18 F Fluorodeoxy glucose 12 0.03 -3.09 -3.03 2.68 -3.61 2.12 -1368.59 0.305 0.936

Propranolol 19 -0.08 -6.27 -0.82 1.92 -5.01 0.214 -1371.88 0.187 0.906

Oxprenolol 19 -0.13 -5.75 -0.31 2.47 -3.46 2.92 -1371.41 0.536 0.921

Minocyclines 33 -0.3 -9.92 0.04 1.37 -8.85 0.00032482 -1375.76 0.354 0.879

Chlorphenesin 13 -0.05 -4.65 -0.09 1.1 -3.62 2.21 -1370.23 0.12 0.960

Guaifenesin 14 -0.14 -5.35 -0.2 1.37 -4.14 0.91711 -1371.02 0.114 0.959

Ha The number of heavy atoms in each drug molecule

Eb The electrostatic component of binding free energy in kcal mol-1

Vdw-Hb-Ds Van der waals, hydrogen bond-desolvation energy component of binding free energy in kcal mol-1

Ic Total internal energy of binding in kcal mol-1

Td Torsional energy of binding in kcal mol-1

BEe Estimated binding free energy in kcal mol-1

Ki Inhibitory constant in millimolar

ΔGinter Gibbs free energy of binding in kcal mol-1

MD Standard deviation of mean

RMSD Root mean square deviation
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present in the newly defined binding pocket (Fig. 4a, b, c).
Minocycline is an inhibitor that plays a role in delaying
disease progression of Huntington's disease [22]. Optimal
Gibbs free energy values for these three drug complexes are
indicative of their maximum stability.

Statistical prediction based on standard deviation of mean
values

To define the accuracy of predictions done in the present
study pertaining to various docking interactions standard
deviation of mean (MD’s) were used [23]. When MD
values have been used for finding the accuracy, the test
outcome can be either positive (positive MD) or negative
(negative MD), while the actual MD remains within the
range of tolerance. Hence, with large numbers of false
positives and few false negatives, a positive interaction
pocket was retrieved. The 100% sensitivity and specificity
of 93.33% indicates that the selected inhibitors specifically
bind to the newly defined pocket. A false positive rate (α)
of 6.667% can be attributed to some of those inhibitors that

exhibit interaction either with Val217 or Asn218 of the
binding pocket. However, false negative rate (β) remains at
zero discarding any possibility of the inclusion of any non-
interacting residues. A recall value of 100% signifies that
all the relevant interactions have been retrieved with
97.22% accuracy in these interactions and 95.45% preci-
sion in the results after repeated calculations. Thus,
sensitivity is synonymous to recall values. An F-test has
been applied which shows 97.67% value defining the
predicted pocket to be the best interacting pocket (Table 5).
The major interactions in this pocket take place through
hydrogen bonds that are most likely an essential require-
ment for macromolecule-inhibitor interactions.

Discussion

The main finding of the present study indicates a new
binding pocket distinct from the aromatic cage, present on
the surface of HIP14. This new site provides the binding
surface to many of the small molecule compounds that

Table 4 Calculated energies and RMSD for protein complexes with potential inhibitors showing interaction with Asn218

Drug Eb* Vdw-Hb-Ds* Ic* Td* BEe* Ki Value* (mM) ΔGinter* MD RMSD*

Mephenesin 0.07 -5.03 -0.17 1.10 -3.91 1.36 -1370.487 -0.562 0.942

Metoprolol -0.05 -5.26 -0.19 2.47 -2.86 7.79 -1370.837 -0.036 0.905

Fructose -0.26 -3.85 0.02 2.74 -1.35 101.73 -1369.637 -0.221 0.918

18 F Fluorodeoxy glucose -0.04 -3.22 -2.18 2.68 -2.76 7.79 -1368.89 -0.036 0.928

Propranolol -0.02 -6.35 -0.23 1.92 -4.59 0.43091 -1371.907 -0.525 0.883

Oxprenolol -0.08 -5.8 -0.37 2.47 -3.52 2.64 -1371.407 0.113 0.895

minocyclines -0.34 -9.66 0.05 1.37 -8.62 0.00048417 -1375.527 0.112 0.806

Chlorphenesin -0.05 -5.89 -0.16 1.1 -4.93 0.24152 -1371.467 -0.202 0.951

Guaifenesin -0.1 -5.38 -0.31 1.37 -4.24 0.77663 -1371.017 -0.403 0.934

Abbreviations same as in Table 3

Fig. 3 Cartoon representation
of the whole protein with local-
ization of previously known as
well as the newly predicted
binding pockets Leu211,
Val217, Asn218, Ala247,
Gly248 are some of the residues
lining the newly identified
binding pocket and Met191,
Trp196, Tyr198 and Trp231
residues localized at the
aromatic cage that have been
shown as sticks
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potentially inhibit the protein. Furthermore, the specific
interaction of inhibitors with this pocket was established
based on the statistical results and cross validation using web
based server. Interestingly, HIP14 is known to modulate the
expression of htt protein (that causes Huntington disease)
through protein-protein interactions. We have considered 225
residues long C chain of an ankyrin repeat domain of HIP14 for
studying the protein-inhibitor interactions. The N terminal

domain of the protein is involved in substrate recognition [6].
The C chain comprised of 7-8 ankyrin repeats but lacks five
predicted trans membrane helices and DHHC motif that has
been reported to be involved in palmitoylation [24]. The
protein has also been established as an important drug target
as it regulates the sub cellular localization of various
oncogenes [4].

Docking tools have turned out to be an effective means
for the prediction of binding pockets and ligand-protein
interactions. The entire docking method exploits the
physiochemical properties and surface complementarities
of residues present in the binding site based on how the
scoring functions rank the various docking outputs [25]. We
have confirmed the identification of the new binding pocket
using both blind docking as well as utilizing different
docking grids spanning various regions of the entire
protein. We sought to determine whether the newly
predicted site binds to various putative inhibitors against
Huntington disease. The new binding pocket exhibits high
specificity for HIP14-inhibitor interactions. An exhaustive
computational analysis of the molecular interaction of

Fig. 4 Docking conformations of the best protein-inhibitor complexes; a Minocycline in complex with HIP14. Hydrogen bonds have been
depicted as dashes; b 18 F Fluorodeoxyglucose in complex with HIP14; c Metoprolol in complex with HIP14

Table 5 Statistical analysis of screened protein-inhibitor complexes

Tests Values (in %)

Sensitivity 100

Specificity 93.33

False positive rate (α) 6.667

False negative rate (β) 0

Precision 95.46

Recall 100

F – measure 97.67

Accuracy 97.22
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protein-inhibitor binding performed on dual active site
reveals the critical role played by hydrogen bond inter-
actions. Multiple hydrogen bonds confer stability to the
protein-inhibitor complexes [21]. Our analyses indicate that
better hydrogen interactions lead to a better binding of the
drug to protein. The best inhibitors (Tables 3, 4) are
comprised of carbohydrates from deoxy-glucose family,
alcohols and tetracycline. They have earlier been known to
play an important role in the treatment and diagnosis of not
only Huntington disease but also to cancer [26–29].

The binding of the best inhibitors results in the release of
free energy. The analyses of hydrogen bonding interactions
point out that the hydrogen bonds contribute to the binding
free energy. This stabilizing behavior of the HIP14-inhibitor
complex is due to establishment of hydrogen bonds
between the electronegative atoms of the anion and
electropositive protons of the cation [30]. They contribute
the most important role to be the potent inhibitor. The best
protein-inhibitor complexes exhibit the minimum intermo-
lecular Gibbs free energy. These complexes have been
stabilized by a multitude of forces acting at the binding
pocket. Most of the inhibitors make hydrogen bonds with
Val217 and Asn218. Also, Val217, Leu211, Leu219,
Val215 and Ala247 are the major nonpolar aliphatic
residues lining the binding pocket that contribute to
hydrophobic interactions. The newly predicted site is
specific for these inhibitors as geometry based docking
transformations against the previously known binding site
did not show any interactions. The inhibitors having the
lower inhibitory constant show higher affinity to the
protein. The statistical analysis has shown the results to
be accurate and precise. These studies provide a strong
foundation for future experimental testing to validate the
compounds as true lead molecules that can be used to cure
Huntington disease.
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